Inclination sensor # INY360D-F99-2I2E2-V17 - E1-Type approval - Measuring range 0 ... 360° - Analog output 4 mA ... 20 mA - Evaluation limits can be taught-in - 2 programmable switch outputs - High shock resistance - Increased noise immunity 100 V/m ## **Dimensions** # **Technical Data** | General specifications | | |--------------------------------------|----------------------------| | Туре | Inclination sensor, 2-axis | | Measurement range | 0 360 ° | | Absolute accuracy | ≤±0.5 ° | | Response delay | ≤ 25 ms | | Resolution | ≤0.1 ° | | Repeat accuracy | ≤±0.1 ° | | Temperature influence | ≤0.027 °/K | | Functional safety related parameters | | Refer to "General Notes Relating to Pepperl+Fuchs Product Information" Release date: 2020-04-24 Date of issue: 2020-06-03 Filename: 201501_eng.pdf | Technical Data | | | |--|----------------|---| | MTTF _d | | 300 a | | Mission Time (T _M) | | 20 a | | · ···· | | | | Diagnostic Coverage (DC) | | 0 % | | ndicators/operating means | | 1ED | | Operation indicator | | LED, green | | Teach-In indicator | | 2 LEDs yellow (switching status), flashing | | Button | | 2 push-buttons (Switch points programming , Evaluation range programming) | | Switching state | | 2 yellow LEDs: Switching status (each output) | | Electrical specifications | | | | Operating voltage | U _B | 10 30 V DC | | No-load supply current | Io | ≤ 25 mA | | Time delay before availability | t_{v} | ≤ 200 ms | | Switching output | | | | Output type | | 2 switch outputs PNP, NO , reverse polarity protected , short-circuit protected | | Operating current | IL | ≤ 100 mA | | Voltage drop | | ≤3 V | | Analog output | | | | Output type | | 2 current outputs 4 20 mA (one output for each axis) | | Load resistor | | 0 200 Ω at U_B = 10 18 V 0 500 Ω at U_B = 18 30 V | | Compliance with standards and directives | | | | Standard conformity | | | | Shock and impact resistance | | 100 g according to DIN EN 60068-2-27 | | Standards | | EN 60947-5-2:2007
IEC 60947-5-2:2007 | | Approvals and certificates | | | | UL approval | | cULus Listed, Class 2 Power Source | | E1 Type approval | | 10R-04 | | Ambient conditions | | | | Ambient temperature | | -40 85 °C (-40 185 °F) | | Storage temperature | | -40 85 °C (-40 185 °F) | | Mechanical specifications | | , , , | | Connection type | | 8-pin, M12 x 1 connector | | Housing material | | PA | | Degree of protection | | IP68 / IP69K | | Mass | | 240 g | | Factory settings | | 2-10 g | | Analog output (X) | | -45 ° 45 ° | | | | -45 ° 45 ° | | Analog output (Y) | | | | Switching output (X) | | -30 ° 30 ° | Switching output (Y) -30 ° ... 30 ° ### **Connection** ### Standard symbol/Connection: # **Connection Assignment** ### Wire colors | 1 | WH | (white) | |---|----|---------| | 2 | BN | (brown) | | 3 | GN | (green) | | 4 | YE | (yellow | | 5 | GY | (gray) | | 6 | PK | (pink) | | 7 | BU | (blue) | | 8 | RD | (red) | | | | | ### **Accessories** | 2 | V17-G-2M-PUR | Female cordset, M12, 8-pin, shielded, PUR cable | |---|-------------------|---| | 2 | V17-G-5M-PUR | Female cordset, M12, 8-pin, shielded, PUR cable | | 2 | V17-G-10M-PUR | Female cordset, M12, 8-pin, shielded, PUR cable | | 2 | V17-G-10M-PVC-ABG | Female cordset, M12, 8-pin, shielded, PVC cable | ### **Sensor Orientation** In the default setting the zero position of the sensor is reached, when the electrical connection faces straight upwards. ### **X** Orientation ### **Y** Orientation #### Mounting of the sensor Sensors from the -F99 series consist of a sensor module and accompanying cast aluminum housing. Select a vertical surface with minimum dimensions of 70 mm x 50 mm to mount the sensor. Mount the sensor as follows: - 1. Loosen the central screw under the sensor connection. - 2. Slide back the clamping element until you are able to remove the sensor module from the housing. - 3. Remove the sensor module from the housing - 4. Position the housing at the required mounting location and secure using four countersunk screws. Make sure that the heads of the screws do not protrude. - 5. Place the sensor module in the housing. - 6. Slide the clamping element flush into the housing. Check that the sensor element is seated correctly. - 7. Finally tighten the central screw. The sensor is now mounted correctly. ### **Additional Information** ### **LED display** | Displays dependent on the operating state | LED | LED | LED | |---|---------|------------|------------| | | green: | yellow | yellow | | | Power | out 1 | out 2 | | Teach-in of switching points (X-axis): | off | flashes | off | | Teach-in of switching points (Y-axis): | off | off | flashes | | Activate teach-in mode for analog limits: | off | flashes | flashes | | Teach-in of analog limit (X-axis) | off | flashes | off | | Teach-in of analog limit (Y-axis) | off | off | flashes | | Normal operation | on | switchings | switchings | | | | tate | tate | | Reset to factory settings: | | | | | 2 s 10 s | off | flashes | flashes | | > 10 s end of reset process | flashes | off | off | | Followed by normal operation | | | | | Undervoltage | flashes | off | off | #### **Axis definition** The definition of the X-axis and Y-axis is shown on the sensor housing by means of imprinted and labeled double arrows. #### Teach-in of switching points (X-axis) - 1. Press key T1 > 2 s (see LED display) - 2. Move sensor to switching position 1 - 3. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 1 has been taught - 4. Move sensor to switching position 2 - 5. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. Switching point 2 has been taught - 6. Sensor returns to normal operation (see LED display) The NC (active output state) is always defined in the range from the 1st configured position to 2nd configured position. As an example: Case #1: configure position #1 at +45degree, configure position #2 at +90 degree; NC is from +45 ' +90 in the CW direction Case #2: configure position #1 at +90degree; configure position #2 at +45 degree; NC is from +90 ' +45 in the CW direction #### Teach-in of switching points (Y-axis) - 1. Press key T2 > 2 s (see LED display) - 2. Move sensor to switching position 1 - 3. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. Switching point 1 has been taught - 4. Move sensor to switching position 2 - 5. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. Switching point 2 has been taught - 6. Sensor returns to normal operation (see LED display) The NC (active output state) is always defined in the range from the 1st configured position to 2nd configured position. See also the example, above. ### Teach-in of analog limits (X-axis) - 1. Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 > 2 s (see LED display) - 2. Press key T1 > for 2 s (see LED display) - 3. Move the sensor into the position of minimum evaluation limit - 4. Press key T1 briefly. LED out 1" lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value. - 5. Move the sensor into the position of maximum evaluation limit - 6. Press key T1 briefly. LED "out 1" lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value. - 7. Sensor returns to normal operation (see LED display) If the sensor inclination exceeds one of the analog limits, the last value of the analog output is retained. ### Teach-in of analog limits (Y-axis) - 1. Activate the teach-in mode for the analog limits by simultaneously pressing keys T1 and T2 > 2 s (see LED display) - 2. Press key T2 > 2 s (see LED display) - 3. Move the sensor into the position of minimum evaluation limit - 4. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. The minimum evaluation limit has been taught. In this position the analog output will provide its minimum output value. - 5. Move the sensor into the position of maximum evaluation limit - 6. Press key T2 briefly. LED "out 2" lights for 1.5 s as confirmation. The maximum evaluation limit has been taught. In this position the analog output will provide its maximum output value. - 7. Sensor returns to normal operation (see LED display) ### Resetting the sensor to factory settings - 1. Press keys T1 and T2 > 10 s (see LED display) - 2. The sensor has been reset when the green LED "Power" lights again after approx. 10 s. ### **Undervoltage detection** If the supply voltage falls below a value of approx. 7 V, all outputs and yellow LEDs are deactivated. The green "Power" LED flashes rapidly. If the supply voltage exceeds a value of approx. 8 V, the sensor continues with normal operation. ## **Technical Features** ### **EMC Properties** Interference immunity in accordance with DIN ISO 11452-2: 100 V/m Frequency band 20 MHz up to 2 GHz Mains-borne interference in accordance with ISO 7637-2: | Pulse | 1 | 2 | 2 | 3 | 3 | 4 | |----------------------|-----|-----|-----|-----|---|-----| | | | а | b | а | b | | | Severity | 1 | ı | - 1 | 1 | ı | 1 | | level | - 1 | 1 | - 1 | 1 | ı | - [| | | 1 | - 1 | - 1 | - 1 | ı | - 1 | | Failure
criterion | С | Α | С | Α | Α | С | EN 61000-CD:8kV AD: 15 kV 4-2: Severity IV level EN 61000-30 V/m (80...2500 MHz) 4-3: Severity level EN 61000-2 kV 4-4: Severity level 10 V (0.01...80 MHz) EN 61000- 4-6: Severity level EN 55011: Klasse A